812 research outputs found

    Regularization of fluctuations near the sonic horizon due to the quantum potential and its influence on the Hawking radiation

    Full text link
    We consider dynamics of fluctuations in transonically accelerating Bose-Einstein condensates and luminous liquids (coherent light propagating in a Kerr nonlinear medium) using the hydrodynamic approach. It is known that neglecting the quantum potential (QP) leads to a singular behavior of quantum and classical fluctuations in the vicinity of the Mach (sonic) horizon, which in turn gives rise to the Hawking radiation. The neglect of QP is well founded at not too small distances xlh|x| \gg l_h from the horizon, where lhl_h is the healing length. Taking the QP into account we show that a second characteristic length lr>lhl_r > l_h exists, such that the linear fluctuation modes become regularized for xlr|x| \ll l_r. At xlr|x| \gg l_r the modes keep their singular behavior, which however is influenced by the QP. As a result we find a deviation of the high frequency tail of the spectrum of Hawking radiation from Planck's black body radiation distribution. Similar results hold for the wave propagation in Kerr nonlinear media where the length lhl_h and lrl_r exist due to the nonlinearity.Comment: 23 pages, 2 figure

    The depletion in Bose Einstein condensates using Quantum Field Theory in curved space

    Get PDF
    Using methods developed in Quantum Field Theory in curved space we can estimate the effects of the inhomogeneities and of a non vanishing velocity on the depletion of a Bose Einstein condensate within the hydrodynamical approximation.Comment: 4 pages, no figure. Discussion extended and references adde

    Superradiant scattering from a hydrodynamic vortex

    Full text link
    We show that sound waves scattered from a hydrodynamic vortex may be amplified. Such superradiant scattering follows from the physical analogy between spinning black holes and hydrodynamic vortices. However a sonic horizon analogous to the black hole event horizon does not exist unless the vortex possesses a central drain, which is challenging to produce experimentally. In the astrophysical domain, superradiance can occur even in the absence of an event horizon: we show that in the hydrodynamic analogue, a drain is not required and a vortex scatters sound superradiantly. Possible experimental realization in dilute gas Bose-Einstein condensates is discussed.Comment: 10 pages, 1 figur

    Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates

    Full text link
    We investigate the structure of quantum correlations in an expanding Bose Einstein Condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.Comment: Reference adde

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure

    Series solutions for a static scalar potential in a Salam-Sezgin Supergravitational hybrid braneworld

    Full text link
    The static potential for a massless scalar field shares the essential features of the scalar gravitational mode in a tensorial perturbation analysis about the background solution. Using the fluxbrane construction of [8] we calculate the lowest order of the static potential of a massless scalar field on a thin brane using series solutions to the scalar field's Klein Gordon equation and we find that it has the same form as Newton's Law of Gravity. We claim our method will in general provide a quick and useful check that one may use to see if their model will recover Newton's Law to lowest order on the brane.Comment: 5 pages, no figure

    Ghost Condensate Busting

    Full text link
    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.Comment: 9 pages, minor corrections, a reference added, the discussion on consistency of the Thomas-Fermi approximation expanded, to appear in JCA

    Dispersive fields in de Sitter space and event horizon thermodynamics

    Full text link
    When Lorentz invariance is violated at high energy, the laws of black hole thermodynamics are apparently no longer satisfied. To shed light on this observation, we study dispersive fields in de Sitter space. We show that the Bunch-Davies vacuum state restricted to the static patch is no longer thermal, and that the Tolman law is violated. However we also show that, for free fields at least, this vacuum is the only stationary stable state, as if it were in equilibrium. We then present a precise correspondence between dispersive effects found in de Sitter and in black hole metrics. This indicates that the consequences of dispersion on thermodynamical laws could also be similar.Comment: 19 pages. Black and White version on Phys.Rev.D serve

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure

    Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Get PDF
    International audienceWe have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photo-electron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr 2 O 3 surface oxide and a higher concentration of defective oxygen sites
    corecore